
Python Cheatsheet
virtuousprogrammer.com

Types:
bool: True

bytes: b'Hello World"

complex: 7+1.4j

dict: {'test':7, 1.4:False}

int: 7

float: 1.4

list: [7, True, 'hi']

tuple: (7, True, 'hi')

str: "Hello World"

Keywords:
and: Connect two booleans.

 ex. True and False

assert: Assert a value is True, if

it isn't throws an exception.

 ex. assert a == b, "a is not b"

break: Breaks out of a loop.

class: Class declaration.

 ex. class NewPicture(Picture):

continue: Returns execution to the

top of a loop.

def: Define a function.

 ex. def

functionDefinition(argument1,

argument2):

del: Remove an object from memory

 ex. del foo

elif: Python equivalent to 'else

if'

 ex. elif(a != b):

else: Final option in a string of

if/elif statements.

except: Catches a throw exception.

 ex. except NameError:

exec: Execute a string containing

python code.

 ex. exec """print 'Hello

World'"""

finally: Always executed following

the try statement it's part of.

for x in xs: Loop over an iterable

object.

 ex. for num in [1, 2, 3]

from: Indicates the module to

import from.

 ex. from time import sleep

global: Indicatest that the given

variables are global in the code

block.

 ex. global foo, bar

if: Conditional statement.

 ex. if(x == 3):

import: Import a module.

 ex. import time

in: Returns True if x is in xs.

 ex. x in xs

is: Tests to see if two objects are

the same.

 ex. obj1 is obj2

lambda: Creates adhoc functions.

 ex. lambda x: x * x

not: boolean inversion

 ex. not True

or: Connect two booleans.

 ex. True or False

pass: Noop, for creating an empty

block

print: Prints the given value to

screen

 ex. print "Hello World"

raise: Raise an exception.

 ex. raise Exception("An error")

return: Return from the given

function.

 ex. return 7

try: First half of a try / except

statement

while: Loop keyword.

 ex. while a == 3:

with: Creates a context to perform

functions on.

 ex. with open("file.txt") as f:

yield: In a generator, acts like

return, does not stop execution.

 yield foo

Comparitors:
<, >, ==, >=, <=, <>, !=, is, in,

is not, not in

Conditionals:
if a == b:

 pass

elif a == c:

 pass

else:

 pass

Exception Handling:
try:

 open("file.txt")

except IOError:

 pass

else:

 pass

finally:

 pass

List Comprehension:
[x*2 for x in [1,2,3] if x%2 == 1]

Context Managers(with syntax):
with open("file.txt") as f:

 print f.read()

Function Definition:
def funName(arg, arg2=3, *arglist):

 return arg * optionalArg

Lambda Functions:
lambda arg1, arg2: arg1 + arg2

Generator Definition:
def genName():

 for x in [1,2,3]

 yield x

Class Creation:
class myClass(parentClass):

 def __init__(self, arg1):

 self.objectArg = arg1

 def method2(self):

 return self.objectArg

